Fast Random Walk Graph Kernel

نویسندگان

  • U. Kang
  • Hanghang Tong
  • Jimeng Sun
چکیده

Random walk graph kernel has been used as an important tool for various data mining tasks including classification and similarity computation. Despite its usefulness, however, it suffers from the expensive computational cost which is at least O(n) or O(m) for graphs with n nodes and m edges. In this paper, we propose Ark, a set of fast algorithms for random walk graph kernel computation. Ark is based on the observation that real graphs have much lower intrinsic ranks, compared with the orders of the graphs. Ark exploits the low rank structure to quickly compute random walk graph kernels in O(n) or O(m) time. Experimental results show that our method is up to 97,865× faster than the existing algorithms, while providing more than 91.3% of the accuracies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Random Walk Kernel Derived from Graph Edit Distance

Random walk kernels in conjunction with Support Vector Machines are powerful methods for error-tolerant graph matching. Because of their local definition, however, the applicability of random walk kernels strongly depends on the characteristics of the underlying graph representation. In this paper, we describe a simple extension to the standard random walk kernel based on graph edit distance. T...

متن کامل

Halting in Random Walk Kernels

Random walk kernels measure graph similarity by counting matching walks in two graphs. In their most popular form of geometric random walk kernels, longer walks of length k are downweighted by a factor of λ (λ < 1) to ensure convergence of the corresponding geometric series. We know from the field of link prediction that this downweighting often leads to a phenomenon referred to as halting: Lon...

متن کامل

Loop-Erased Random Walk and Poisson Kernel on Planar Graphs

Lawler, Schramm and Werner showed that the scaling limit of the loop-erased random walk on Z2 is SLE2. We consider scaling limits of the loop-erasure of random walks on other planar graphs (graphs embedded into C so that edges do not cross one another). We show that if the scaling limit of the random walk is planar Brownian motion, then the scaling limit of its loop-erasure is SLE2. Our main co...

متن کامل

Fast Sparse Matrix-Vector Multiplication on GPUs: Implications for Graph Mining

Scaling up the sparse matrix-vector multiplication kernel on modern Graphics Processing Units (GPU) has been at the heart of numerous studies in both academia and industry. In this article we present a novel non-parametric, selftunable, approach to data representation for computing this kernel, particularly targeting sparse matrices representing power-law graphs. Using real web graph data, we s...

متن کامل

Coinciding Walk Kernels: Parallel Absorbing Random Walks for Learning with Graphs and Few Labels

Exploiting autocorrelation for node-label prediction in networked data has led to great success. However, when dealing with sparsely labeled networks, common in present-day tasks, the autocorrelation assumption is difficult to exploit. Taking a step beyond, we propose the coinciding walk kernel (cwk), a novel kernel leveraging label-structure similarity – the idea that nodes with similarly arra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012